safety science

some past and recent research areas

including construction

Paul Swuste PhD

Safety Science Group

Delft University of Technology

The Netherlands

content

- 1. introduction
- 2. asbestos
- 3. steel
- 4. theories models metaphors
- 5. management
- 6. construction
- 7. predictability of accidents
- 8. education

red thread of presentation

- o from mechanism to risk assessment
- o from hazard to culture
- o from human factor to socio-technique
- from technology push, cost reduction to diasters
- from risk assessment to design
- from management to accidents
- \circ from rule following to critical reflection

1 introduction

Raphael School of Athens 16th century

2 asbestos

latency period & mechanism

2 asbestos

occupation and mesothelioma

risk/100 workers	risk ratio	n
4.7	328	59
nce 1.2	83	196
0.3	24	12
0.2	15	10
0.1	9	23
0.07	5	102
0.06	4	13
0.01	1	254
	risk/100 workers 4.7 nce 1.2 0.3 0.2 0.1 0.07 0.06 0.01	risk/100 workers risk ratio 4.7 328 nce 1.2 83 0.3 24 0.2 15 0.1 9 0.07 5 0.06 4 0.01 1

3 steel works

we are here to produce

this is a very dangerous plant

we work like this for years without too much trouble

we do not need procedures, because we are experienced

everybody is responsible for his own safety

victims are always to blame accidents will always happen

Swuste P Hale A Guldenmund F (2002). Changes in a steel works learning from failures and partial successes. in System Safety challenges and pitfalls of intervention Pergamon Adam

Heinrichs' metaphors statistical correlations

- 1927 costs:1:4(direct : indirect)
- 1928 causes: 88:10:2 (human:technical:God)
- 1929 mechanism: 1:29:300 (serious : minor : no harm)
- 1931 management: training, selection, safety technique
- 1941 sequence, dominos:

Heinrich W (1927). The "incidental" cost of accidents. National safety News 17(2):18-20 Heinrich W (1928). The origin of accidents. National safety News 18(1):9-13
Heinrich W (1929). The foundation of major injury. National Safety News 19(1):9-11, 59 Heinrich W (1931). Industrial accident prevention, a scientific approach
Heinrich W (1941). Industrial accident prevention, a scientific approach 2nd edition

4 modern times 1933

Heijermans (NI) 1905. Job, working hours, crowded workplaces
Eastman (US) 19010. Dangerous machines, repeated accidents
Home Office (UK) 1911. High workload, industrial fatique
DeBlois (US) 1926. One learns from risks, hazard ≡ energy
Vernon (UK) 1936. External causes of accidents

complexity of men-machine systems

automation

Aberfan Barry Turner 1978

- o rigid risk perception and a strong believe in the organisation;
- focus on underground hazards;
- minimalizing unexpected dangers;
- organisational exclusivity; signals not coming from members, are not taken seriously;
- o information, communication problems between departments.

4 theories - models - metaphors accident definition

An accident is the result of a complex series of events,

related to energy transfer, failing barriers, and control

systems, causing faults, errors, unsafe acts, and unsafe

conditions and changes in process and organisational

conditions.

Johnson W (1970). New Approaches to safety in industry

Bhopal 1984

Tjernobyl 1986

Challenger 1986

Zeebrugge 1987

Piper Alpha 1988

Exxon Valdez 1989

Le Coze J (2013). New models for new times, an anti-dualist move. Safety Science 59:200-218

normal accidents

Interactions

Perrow C (1984). Normal accidents, living with high-risk technologies. BasicBooks, US

so you want to understand an aircraft carrier? Well, just imagine that it's a busy day, and you shrink San Francisco Airport to only one short runway and one ramp and gate. Make planes take off and land at the same time, at half the present time interval, rock the runway from side to side, and require that everyone who leaves in the morning returns that same day. Make sure the equipment is so close to the edge of the envelope that it's fragile. Then turn off the radar to avoid detection, impose strict controls on radios, fuel the aircraft in place with their engines running, put an enemy in the air, and scatter live bombs and rockets around. Now wet the whole thing down with salt water and oil, and man it with 20-yearolds, half of whom have never seen an airplane close-up. Oh, and by the way, try not to kill anyone. Senior officer, Air Division

Rochlin G La Porte T Roberts K (1987). The self-designing high reliability organisation: aircraft carrier flight operation at sea. Naval War College Review 40:76-90

4 theories - models - metaphors people make accidents organisations cause them

Safety is an dynamic property obtained by the systemic articulation of hazards, environmental, organisational and individual dimensions in high-tech-high-hazard sectors.

This property is obtained through the on-going interaction of in/external actors with technology, mediated by structures and power.

Balancing conflicting goals defined as trade-offs quandaries is at the heart of the vision of safety. The power of safety departments is one of the elements of the quality of these tradeoffs.

Wagenaar W (1998). People make accidents but organisations cause them. In: Feyer A Williamson A. Occupational injury, risk, prevention and intervention, p. 121-128. Taylor & Francis, London

Swiss cheese

Reason J (1997). Managing the risk of organisational accidents. Ashgate, Aldershot Hampshire

process & occupational safety - bowtie

Visser K (1998). Developments in HSE Management in Oil & Gas Exploration, Production Guldenmund F Hale A Goossens L Betten J Duijn N (2006). Audit technique quality safety barrier management. Journal of Hazardous Materials 130(3)

Rasmussen drift to danger

4 theories - models - metaphors Rasmussen drift to danger

5th generation technology 2nd generation managers

Colombia 2003

Texas City 2005

Buncefield 2005

AF 447 2009

Deepwater Horizon 2010

Fukushima 2011

Le Coze J (2013). New models for new times, an anti-dualist move. Safety Science 59:200-218

management

management

5 management and design

5 ideal feedback

actual feedback

Accident scenarios

Risk evaluation, audits

Process (re)design

Maintenance

Production Literature Similar sectors Expert opinion

6 construction is 'organic'

Ford Madox Brown 1852-1865

Fernand Léger 1950

6 construction shocks and vibrations

Swuste P Drimmelen D van Burdorf A (1997). Pneumatic chippers design analysis and solution generation Safety Science 27:85-98

6 construction accident process

direct and latent factors in construction

direct factors	latent factors
disturbances in materials	safety-production conflict (time)
disturbances in process	production bonuses
inadequate monitoring	not familiar with scenarios
prime focus on human factor	indifference to safety
inadequate accident analysis	no link to safety policies
labour, low level of education	distant from mother company
language	not adequate safety managem.
macho behaviour	relation design – unsafety
	low safety knowledge architects
	separation design – execution

Swuste P Frijters A Guldenmund F (2012). Is it possible to influence safety in the building sector. Safety Science 50:1333-1343

7 are accidents predictable?

Swuste P Theunissen J Schmitz P Reniers G Blokland P (2016) Process safety indicators Journal of Loss Prevention 40:162-173

7 recent research

- start with hazards and scenarios, observations, interviews workers & managers, literature, accident reports
- 2. determine central events, many scenarios, few central events
- 3. which barriers are present to stop, reduce effects of scenarios
- 4. how effective are barriers, interviews, accident reports
- 5. does management control the effectiveness of barriers

8 education

competence levels

red thread of presentation

- o from mechanism to risk assessment
- o from hazard to culture
- from human factor to socio-technique
- from technology push, cost reduction to diasters
- from risk assessment to design
- o from management to accidents
- from rule following to critical reflection